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Humoral immunity in mammals relies on the function of two developmentally

and functionally distinct B-cell subsets—B1 and B2 cells. While B2 cells are

responsible for the adaptive response to environmental antigens, B1 cells reg-

ulate the production of polyreactive and low-affinity antibodies for innate

humoral immunity. The molecular mechanism of B-cell specification into dif-

ferent subsets is understudied. In this study, we identified lysine methyltrans-

ferase NSD2 (MMSET/WHSC1) as a critical regulator of B1 cell

development. In contrast to its minor impact on B2 cells, deletion of the cat-

alytic domain of NSD2 in primary B cells impairs the generation of B1 lin-

eage. Thus, NSD2, a histone H3 K36 dimethylase, is the first-in-class

epigenetic regulator of a B-cell lineage in mice.
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Two developmentally and functionally distinct B-cell

populations support the humoral immunity in mice and

man [1]. Most peripheral B cells, which are defined as

B2 cells, are generated in the bone marrow and have an

immensely diverse, mostly non-self-directed antibody

repertoire [2,3]. B2 cells can expand rapidly upon infec-

tion or antigen stimulation, followed either by immedi-

ate differentiation into antibody-producing plasma cells

or by the germinal center reaction and ensuing genera-

tion of cells expressing high-affinity antibody [4].

In contrast to B2 cells, the majority of B1 cells are

generated by late fetal and/or neonatal definitive

hematopoiesis and reside predominately within well-

defined anatomical compartments, such as peritoneal

cavity and pleural cavity [5,6]. They do not proliferate

in response to antigen stimulation, but divide in a

seemingly autonomous fashion at a low rate [7]. The

antibody repertoire of B1 cells is represented largely

by self-reactive or polyreactive low-affinity antibodies,

mostly of the IgM or IgG3 (and IgA in mucosal

Abbreviations

BCR, B-cell receptor; H3K36me2, histone 3 lysine 36 dimethylation; NSD2, nuclear receptor SET domain-containing protein 2; MMSET/

WHSC1, methyltransferase NSD2.
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surfaces) isotypes [8–10]. In addition to the markedly

different developmental and functional features, B1

cells display a distinct pattern of surface proteins,

including CD5 or CD11b that are expressed normally

on T cells or macrophages, respectively [6,11,12].

Accordingly, the CD5-positive B1 cells are defined as

B1a cells and the CD5-negative B1 cells as B1b cells.

The ontogeny of B1 cells is not well understood, and

opposing ideas have been posited. Some findings sug-

gested these cells develop from a distinctive fetal lin-

eage [13,14], while others indicated that B1

differentiation is ‘instructed’ by signals downstream of

their surface antigen receptors [15]. These concepts

may not be mutually exclusive, since B1 cells expresses

polyreactive antigen receptors [16] that could be partic-

ularly amenable to stimulation from self or environ-

mental antigens, leading to the surface expression of

characteristic markers. The discovery of lin28b as a

key regulator of B1 cell development [17] supports the

existence of a separate lineage for these cells.

The NSD2 (nuclear receptor SET domain-contain-

ing protein 2, also known as MMSET, multiple mye-

loma SET domain-containing protein or WHSC1,

Wolf–Hirschhorn syndrome candidate 1) is one of

three members of the NSD family of histone lysine

methyltransferases [18] that contains, in addition to

the catalytic SET domain, PHD (plant homeodomain)

fingers, PWWP (Pro-Trp-Trp-Pro) domains, and a

NSD-specific Cys-His-rich C5HCH domain. Hereafter,

we will refer to this protein as NSD2.

The substrate specificity of NSD2, while most likely

being the Lys36 of histone H3 in vivo, remains some-

what controversial and in vitro depends on the nature

of a substrate [19,20]. The methylation of Lys36 of his-

tone H3 has been implicated in the process of RNA

elongation during transcription, thus suggesting that

NSD2 contributes to the generation of full-length tran-

scripts [21]. NSD2 function is essential for normal

development in mice and humans, and NSD2 defi-

ciency in mice leads to neonatal death due to severe

growth retardation [22]. NSD2 is often deleted in

Wolf–Hirschhorn syndrome [23], and a great deal of

attention for NSD2 stems from its link to aggressive

multiple myeloma in humans [24], whereby the t(4;14)

translocation places the Nsd2 gene, which encodes

NSD2, under the control of the IgH Eµ-enhancer and

leads to NSD2 overexpression [25]. This molecular sig-

nature is linked to aggressive myeloma and poor prog-

nosis [26]. The mechanism of NSD2 contribution to

myelomagenesis and/or tumor progression is not well

understood.

Here, we present data on the essential and selective

role of the NSD2 histone methyltransferase in mouse

B cells, as it is required for the generation of the B1

lineage.

Methods

Ethical statement

Nsd2loxSET/loxSET and Nsd2DSET/DSET mice on C57/BL6

background were generated in our laboratory. Nsd2lox

SET/loxSET littermates (not crossed to the mice express-

ing Cre recombinase) were used as controls. Mice were

housed under specific pathogen-free conditions, and

experimental protocols were approved by the Rocke-

feller University Institutional Animal Care and Use

Committee. All studies were conducted in accordance

with the GlaxoSmithKline plc (GSK) Policy on the

Care, Welfare and Treatment of Laboratory Animals

and were reviewed the Institutional Animal Care and

Use Committee either at GSK or by the ethical review

process at the Institution, where the work was per-

formed.

Generation of Nsd2-flox-SET mice

To create the targeting vector pBSmmsetflox, a single

loxP site [27], a BsoBI (Ava I) restriction site, and a

NeoR selection marker cassette flanked by FRT sites

[28] were introduced into a HindIII site in intron 19

and an additional loxP site was inserted in a BglII site

in intron 17 of the mouse Nsd2 locus (Fig. 1A). ES

cells at embryonic day 14.1 were transfected and

selected by standard techniques. Successful recombi-

nants were identified by Southern blot analysis (BsoBI-

digested total DNA with 5’ or 3’ probe; NcoI-digested

total DNA with 3’ probe). Targeted ES cells were used

to generate mice. The FRT site-flanked NeoR cassette

was removed by breeding to FLP deleter mice [29].

The resulting mice were designated Nsd2loxSET/loxSET

(Fig. 1A).

Generation of mice with germ line- or B-cell-

specific ablation of the NSD2 SET domain

To ablate NSD2 SET domain in germ line, the

Nsd2loxSET/loxSET mice were crossed with the B6.C-Tg

(CMV-cre)1Cgn/J [30]. For B-cell-specific ablation, the

following deletor mice were used: B6.C(Cg)-Cd79atm1

(cre)Reth/EhobJ (Mb1-Cre) [31], B6.Cg-Commd10Tg

(Vav1-icre)A2Kio/J (Vav1-Cre) [32], and B6.129P2(C)-

Cd19tm1(cre)Cgn/J (CD19-Cre) [33]. All Cre deletor mice

were from the Jackson Laboratory (Bar Harbor, ME,

USA). All experiments were performed with 8- to 16-

week-old mice.
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Fig. 1. Expression of Nsd2 and generation of mice with B-cell-specific expression of catalytically inactive NSD2. (A) Structure of the wild-

type Nsd2 locus, the targeted locus (Nsd2loxSET/FRT), the targeted locus after FLP recombination-mediated deletion of the NeoR cassette

(Nsd2loxSET/loxSET), and the SET domain-deleted locus after Cre recombination (Nsd2DSET/DSET). Numbered rectangles depict exons, and filled

triangles and circles represent loxP and FRT sites, respectively. Restriction sites and distances are indicated above each locus. The 5’ and 3’

probes used in Southern blots are shown as gray bars. (B) Nsd2 expression profile in different B-cell populations purified from 6- to 12-

week-old mice was determined by qPCR and normalized to Tbp using primer pairs tcatgggaaacacaattcagca/aagtagcttcaaagggtgtcg and

gctctggaattgtaccgcag/ctggctcatagctcttggctc for Nsd2 and Tbp, respectively. Bone marrow (BM) pro-B cells (pro-B), pre-B cells (pre-B),

immature B cells (immature B), splenic (Spl) transitional 1 B cells (T1), transitional 2 B cells (T2), marginal zone B cells (MZ B), follicular B

cells (Fol B), lymph node (LN) B cells (B), peritoneal cavity (PeC) B1a cells (Bia), and recirculating B cells (recirc B). A representative

experiment out of 3 performed (3 biological and 3 technical replicates each). (C) Nsd2 expression is upregulated upon B-cell activation

in vitro. Purified splenic B cells were stimulated with different agents for up to 96 h, and RNA level of the gene of interest was measured

at 4, 24, 48, and 96 h. A representative experiment out of 3 performed (3 biological and 3 technical replicates each). (D) Mb1Cre- and

Vav1Cre- mediated deletion of the SET domain-encoding exons 18 and 19 of the Nsd2 gene in splenic B cells. Southern blot analysis of DNA

isolated from purified B cell with the 5’ probe after BsoBI digest is shown. The 7.7 kb band corresponds to the targeted locus (fl/fl), and the

14 kb and the 10.9 kb bands correspond to the wild-type (+/+) and Cre-modified Nsd2 gene, respectively. A representative experiment out

of 2 performed (no technical replicates). (E) Whole-transcriptome profile of Nsd2 gene in splenic B cells isolated from Nsd2loxSET/loxSET (WT)

and Mb1creNsd2loxSET/loxSET (NSD2DSET) mice. IGV tracks show the relative RNA expression level. Exons 18 and 19 encoding the SET

domain are boxed. A representative experiment out of 3 performed (no technical replicates). (F) Truncated NSD2DSET protein is less stable

compared to its full-length counterpart in purified splenic B cells from Nsd2loxSET/loxSET (fl/fl), Mb1creNsd2loxSET/loxSET (Mb1cre), and

Vav1creNsd2loxSET/loxSET (Vavcre) mice. Exons 18 and 19 encode for 83 amino acids, which are missing in NSD2DSET. A representative

experiment out of 2 performed (no technical replicates).
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Antibodies

The following antibodies were purchased from either

BD Biosciences (San Jose, CA, USA), eBioscience/

Thermo Fisher Scientific (Waltham, MA, USA), or the

Jackson Laboratory: B220 (RA3-6B2), IAb (AF6-

120.1), IgM (115-116-075), IgD (11-26c.2a), CD5 (53-

7-3), CD11b (M1/70), CD21/35 (7G6), CD19 (B3B4),

CD23 (1D3), CD43 (S7), CD86 (GL1), and CD90 (53-

2.1). The B-cell receptor-specific antibodies PE-3H7

(anti-VH11id) and APC-13B5 (anti-Vk9id) were kindly

provided by Kyoko Hayakawa (Fox Chase Cancer

Center, Philadelphia, PA, USA), and the NSD2 anti-

body (29D1) was purchased from Abcam (Cambridge,

UK).

Definition of cell types by cell surface phenotype

Bone marrow pro-B cells (IgM�B220+CD43+), bone

marrow pre-B cells (IgM�B220+CD43�), bone marrow

immature B cells (IgM+B220+), bone marrow recircu-

lating B cells (IgM+B220hi), splenic T1 (IgM+CD21/

35�), splenic T2 (IgM+CD21/35hi), splenic marginal

zone (MZ) B cells (CD19+CD21highCD23low/�), splenic
follicular B cells (CD19+CD21medCD23hi), splenic

T cells (CD3e+), lymph node B cells (CD19+), Peyer’s

patch IgA-expressing B cells (B220+IgM�IgA+),

Peyer’s patch T cells (CD3e+), splenic germinal center

(GC) B cells (B220 + CD95+CD38dull), splenic GC B

cells in the light zone (LZ) (B220 + CD95+CD38dull

CD86+CXCR4lo) and dark zone (B220 + CD95+

CD38dullCD86�CXCR4+), peritoneal cavity (PeC) T

cells (CD5+IgM�), PeC B1a cells (IgMhiCD11b+CD5+),

PeC B1b cells (IgMhiCD11b+ CD5�), and PeC B2 cells

(IgM+CD11b�CD5�).

ChIP-seq

The ChIP was performed as previously described

[34,35]. In brief, 107 cells were cross-linked with 0.5%

formaldehyde at room temperature for 10 min. Chro-

matin was sonicated to 300–500 bp in RIPA buffer

with 0.3 M NaCl. 5–10 lg antibodies were preincu-

bated with Dynabead Protein A/G (Invitrogen/Thermo

Fisher Scientific, https://www.thermofisher.com/orde

r/catalog/product/10003D#/10003D) for at least 8 h

before incubating with sonicated chromatin overnight.

After that, beads were washed in modified RIPA wash

buffer (100 lM LiCl) and 1 9 in TE. After overnight

cross-link reversal at 65°C, RNase digestion, and pro-

teinase K digestion, ChIP DNA and input DNA were

purified using the QIAquick PCR Purification Kit

(Qiagen, Hilden, Germany). For validation of ChIP-

seq, ChIP DNA was analyzed via qPCR using SYBR

Green PCR Master Mix and the LightCycler 480

(Roche, Basel, Switzerland). Primer sequences are

available upon request.

For ChIP-seq, 30 µL of ChIP DNA was used to

generate blunt-ended DNA using reagents supplied

with the Epicenter DNA EndRepair kit (Epicentre

Biotechnologies, Madison, WI, USA) according to the

manufacturer’s instructions. The end-repaired DNA

was purified using the QIAquick PCR Purification Kit.

Using Klenow fragment (30 to 50 exo-, New England

Biolabs, Ipswich, MA, USA), the ‘A’ bases were added

to the DNA. The DNA was purified using the MinE-

lute PCR Purification Kit (Qiagen). The T4 DNA

ligase (New England Biolabs) was used for ligation of

Illumina/Solexa adapters to the DNA fragments. The

adaptor-ligated DNA was purified with the MinElute

PCR Purification Kit (Qiagen). The DNA fragments

were subjected to 18 cycles of PCR using the Illumina/

Solexa primers 1.0 and 2.0 to generate the ChIP-seq

libraries. The ChIP-seq libraries were purified with the

MinElute PCR Purification Kit (Qiagen).

Samples were sequenced on the Illumina HiSeq 2000

platform for 50 cycles, and raw sequencing data were

processed using the CASAVA_v1.8.2 software to gen-

erating fastq files. Sequencing reads were aligned to

the mouse genome (mm9) using BOWTIE v0.12.7 [36].

Reads were kept if they aligned with two errors or

fewer and did not align to more than one location in

the genome. A 25-bp density coverage map was cre-

ated by extending each read for 100 bp to account for

mean library fragment length and mapping the number

of reads per 25 bp bin using IGVtools [37]. Values in

each sample were normalized to fpkm values by calcu-

lating the fraction of mapped reads per bin in one mil-

lion total reads.

For comparative analysis of promoter regions, the

number of aligned reads in the area surrounding the

transcriptional start site (�3 kb) of each gene was

used.

Preparation of libraries for RNA sequencing

About 2 µg of total RNA was used per sample, ribo-

somal RNA was removed with the Ribo-Zero Mag-

netic Kit (Epicentre Biotechnologies), and libraries

were prepared with the ScriptSeq v2 RNA-Seq Library

Preparation Kit (Epicentre Biotechnologies) following

the manufacturer’s instructions. Samples were

sequenced in the same manner as the ChIP-seq sam-

ples, but using 100 cycles instead of 50. Fastq reads

were aligned to the mouse reference genome mm9

using TopHat [38] to account for splicing and
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alternative promoter usage as well as insertions and

deletions. Subsequently, the cufflinks RNA-seq analy-

sis tool cuffdiff [39] was used to assess differential gene

expression, alternative promoter usage, and splicing

variation between experimental datasets. The resulting

fpkm values were used for further data analysis and

visualization.

Quantitative PCR

Total RNA was extracted from freshly isolated cells

using an RNase minikit (Qiagen) according to the

manufacturer’s protocol. RNA was DNase-treated

using an RNase-free DNase set (Qiagen), and cDNA

was synthesized using reagents supplied with a First

Strand cDNA Synthesis Kit (Roche). Quantitative

real-time PCR was performed using SYBR Green

(Roche) on a Roche LightCycler 480. Primers were

designed with the Primer3 program. MMSET-F: TCA

TGGGAAACACAATTCAGCA; MMSET-R: AAGTAG

CTTCAAAGGGTGTCG; TBP-F: GCTCTGGAATT

GTACCGCAG; TBP-R: CTGGCTCATAGCTCTTG

GCTC.

Analysis of V(D)J junctions

Analysis of immunoglobulin gene rearrangements was

conducted as described previously [40] in threefold

dilutions using Thy1.2 as a loading control.

Protein expression and radioactive

methyltransferase assay

His6-NSD2 (cloned into pET19b) was expressed in

E. coli and purified over Ni-NTA spin columns (Qia-

gen). Methyltransferase assay was performed as

described previously with 10 mM of adenosyl-L-me-

thionine, S-[methyl-3H] (GE Healthcare, Chicago, IL,

USA) for 45 min at 30°C [41]. Protein gels were incu-

bated with ENHANCE (PerkinElmer, Waltham, MA,

USA), dried, and exposed to Kodak Biomax XAR

film (Sigma-Aldrich, St. Louis, MO, USA) for 2 –
10 days at – 80 °C.

Flow cytometry

Single-cell suspensions from indicated tissues were pre-

pared. All antibodies were used at dilutions ranging

from 1:100 to 1:3000 and incubated for 30 min at

4 °C. Flow cytometric analysis and cell sorting were

performed using a FACS LSR II or Aria (Becton

Dickinson, Franklin Lakes, NJ, USA), and data were

analyzed with FlowJo software (Becton Dickinson).

B-cell purification, in vitro activation, and

proliferation

Splenic B cells were purified by depleting CD43+ cells,

using anti-CD43 beads and magnetic columns (Mil-

tenyi Biotec, Bergisch Gladbach, Germany) and stimu-

lated in vitro with 10 µg�mL�1 F(ab’)2 fragment of

goat anti-mouse IgM (Jackson ImmunoResearch, West

Grove, PA, USA) in combination with 25 U�mL�1 of

recombinant mouse IL-4 (R&D Systems, Minneapolis,

MN, USA), 5µg�mL�1 bacterial LPS (Sigma-Aldrich),

or 5 µg�mL�1 of bacterial LPS in combination with 25

U�mL�1 of recombinant mouse IL-4. Labeling of cells

with 5-(6-) carboxyfluorescein diacetate, succinimidyl

ester (CFSE, Molecular Probes, Eugene, OR, USA)

for analysis of proliferation was performed following

the manufacturer’s instructions. The decline in CFSE

fluorescence as a measure of B-cell proliferation was

determined by FACS analysis.

Histone post-translational modification analysis

Histones were extracted in acid and chemically deriva-

tized twice, digested with trypsin, and followed two

more rounds of derivatization, and the peptides were

desalted by using C18 stage tips, as described earlier

[42]. Samples were analyzed using an EASY-nLC

nanoHPLC (Thermo Fisher Scientific) in a gradient of

0–35% solvent B (A = 0.1% formic acid; B = 95%

MeCN, 0.1% formic acid) over 30 min and from 34%

to 100% solvent B in 20 minutes at a flow rate of 250

nL�min�1. Nano-liquid chromatography was coupled

with a Q-Exactive mass spectrometer (Thermo Fisher

Scientific). Full scan MS spectrum (m/z 290 � 1650)

was performed in the Orbitrap (Thermo Fisher Scien-

tific) with a resolution of 30,000 (at 400 m/z) with an

AGC target of 1x10e6. The MS/MS events included

both data-dependent acquisition and target, the latter

for isobaric peptides to enable MS/MS-based quantifi-

cation. The relative abundance of histone H3 and H4

peptides was calculated by using EpiProfile [43].

Cell survival assay

Purified B cells were cultured either in medium alone

or in the presence of 1.56–25 ng mL� of recombinant

BAFF (R&D Systems) for the indicated time and

stained with Annexin V (Roche) and 7-aminoactino-

mycin D (7-AAD; Sigma-Aldrich).

Statistical analysis

Statistical analysis was performed in PRISM (GraphPad

Software, San Diego, CA, USA) with the unpaired t-test.
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Results

The SET domain of NSD2 is required for

postnatal survival

To determine whether the catalytic (SET) domain of

NSD2 is essential for survival, we generated mutant

mice by gene targeting in ES cells. The loxP sites

were introduced in introns 17 and 19 of the NSD2-

encoding gene (Nsd2) and Nsd2loxSET/ loxSET mice

were produced (Fig. 1A). These mice were bred to

the CMVcre germ line deleter mice and then inter-

crossed to produce the Nsd2DSET/ DSET offspring. Sim-

ilar to NSD2�/� [22], homozygous Nsd2DSET/ DSET

mice die early after birth (data not shown). There-

fore, the SET domain of NSD2 is required for post-

natal survival.

B-cell-specific ablation of the NSD2 SET domain

To measure Nsd2 expression in the B-cell compart-

ment, we purified RNA from the wild-type B cells of

different developmental stages and measured its RNA

level by qRT-PCR (Fig. 1B). Nsd2 is expressed in

early B2 cell progenitors (pre- and pro-B cells), and its

transcription is decreased at later stages. Of note, Nsd2

expression in B1 cells was below the level of detection

(Fig 1B). In vitro activation of B2 cells by a variety of

stimuli upregulated Nsd2 transcripts (Fig. 1C). We

conclude that Nsd2 expression levels vary throughout

B-cell development.

To define the contribution of the NSD2 SET

domain to B- and plasma cell development, we condi-

tionally deleted it in the B-cell lineage. Nsd2loxSET/loxSET

mice were crossed to Mb1cre mice for conditional deletion

in pro-B cells [31] or to CD19cre mice for conditional dele-

tion in pre-B cells [33]. They were also crossed to Vav1cre

mice for conditional ablation in multiple lineages during

the early stages of definitive hematopoiesis [32]. The dele-

tion of the NSD2 SET domain in B cells was incomplete

in CD19creNsd2loxSET/loxSET (Fig. 1) and complete in

Mb1creNsd2loxSET/loxSET and Vav1creNsd2loxSET/loxSET

(Fig. 1D). We therefore chose Mb1creNsd2loxSET/loxSET for

all subsequent experiments, and Nsd2loxSET/loxSET litter-

mates were used as control.

Splenic B cells were present in mutant mice, and

successful deletion of Nsd2 exons 18 and 19 was con-

firmed by RNA-seq analysis of purified B cells

(Fig. 1E). By western blot, the NSD2DSET protein

displayed the expected shift in size and was less stable

compared to the wild-type NSD2 (Fig. 1F). We con-

clude that the NSD2 SET domain is largely deleted

from B2 cells.

Histone methylation changes in NSD2DSET B2

cells

In vitro, NSD2 is a histone methyltransferase with

broad specificity [19,20]. In contrast, on intact nucleo-

somes NSD2 predominantly methylates histone H3

with only some residual activity toward histone H4

(Fig. S2). To evaluate the catalytic function of NSD2

in B2 cells, we compared the pattern of histone modifi-

cations in NSD2- versus NSD2DSET-expressing cells

by mass spectrometry. Selective changes were noted in

the pattern of histone H3 modification. In agreement

with the previously reported specificity of NSD2

toward dimethylation of lysine 36 of histone H3

(H3K36me2) [19], overall H3K36me2 and H3K36me3

levels were reduced in NSD2DSET B cells, correlating

with a corresponding increase in the level of

unmodified H3K36 (Fig. 2A–C). The reduction in

H3K36me2/3 methylation affected over 50% of all

modified histones and the loss of H3K36me2/3 appears

to be independent of other modifications on the same

histone. We conclude that in B2 cells, H3K36me2 is

the main substrate of NSD2.

To evaluate changes in the distribution of

H3K36me2 across the genome, we performed ChIP-

seq on wild-type and NSD2DSET mutant B2 cells

(Fig. 2D). This analysis showed significant (p-ad-

justed < 0.05) locus-specific changes: Signal reduction

of over twofold was observed at 6,582 peaks and

increase of over twofold at 548 peaks. The gain of

H3K36me2 in NSD2DSET B cells occurred mainly in

genic (64%) and promoter regions (19.4%), while the

loss of H3K36me2 was observed mainly in intergenic

regions (51.2%; Fig. 2E). We conclude that changes in

H3K36me2 occur at specific sites in the genome.

The NSD2 SET domain is dispensable for B2 cell

development

Flow cytometric analysis of bone marrows showed a

similar distribution of B-cell progenitors in mice with

NSD2- versus NSD2DSET-expressing B cells

(Fig. S3A), while the number of recirculating B-cell

progenitors and of follicular B cells in the spleen was

mildly reduced in the mutant (Fig. S3B). We tested the

impact of NSD2DSET on proliferation in response to

antigen receptor- or polyclonally triggered B-cell pro-

liferation in vitro and found no defect (Fig. S3C). The

ability of B2 cells to respond to prosurvival signals

such as BAFF was not affected by NSD2DSET
(Fig. S3D). Thus, the catalytic function of NSD2 has

only mild effects on the steady-state size and composi-

tion of the B2 cell compartment.
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Fig. 2. Selective methylation of histone H3 at Lys36 by NSD2. (A) Volcano plot shows changes in relative abundance of distinct

modifications of histones extracted from splenic B cells purified from Nsd2loxSET/loxSET (wild-type) or Mb1creNsd2loxSET/loxSET (NSD2DSET)

mice. Values over 4.32 in the Y-axis [(-)log2 pValue] corresponding to -log2 (0.05) are significant and highlighted in red. The data represent 2

biological replicates and 3 independent measurements. Significance was determined by unpaired Student’s t-test. (B) The fraction of histone

H3 modified at Lys36 was determined by combining the frequencies for all histone H3 peptides carrying this modification, independent of

other modifications present on the same peptide. Peptides of controls (from splenic B cells isolated from Nsd2loxSET/loxSET mice) are

represented by white bars; peptides from splenic B cells isolated from Mb1creNsd2loxSET/loxSET mice are in red (left graph). The significant

changes in abundance of H3 peptides carrying the indicated modifications are depicted in red bars, not significant changes in gray bars.

Numbers above the bars indicate the fold change of Mb1creNsd2loxSET/loxSET (NSD2DSET) over Nsd2loxSET/loxSET (wild-type) (right graph). The

data represent 2 biological replicates and 3 independent measurements. (C) Scatter plot of H3K36me2 peaks of splenic B cells

Nsd2loxSET/loxSET (wild-type) and Mb1creNsd2loxSET/loxSET (NSD2DSET) mice. Significant increase (red) or decrease (green) in specific peaks is

indicated (top). Volcano plot illustrating differential H3K36me2 levels in splenic B cells from Nsd2loxSET/loxSET (wild-type) and

Mb1creNsd2loxSET/loxSET (NSD2DSET) mice (bottom). Significant increase (red) or decrease (green) in specific peaks is indicated. Data plotted

are average normalized H3K36me2 values of called peaks from 3 biological replicates. (D) Sample IGV tracks of H3K36me2 confirming the

locus-specific changes in Nsd2loxSET/loxSET (wild-type) vs. Mb1creNsd2loxSET/loxSET (NSD2DSET) splenic B cells. Data represent 2 biological

replicates and 3 independent measurements. (E) The gain (left) and loss (right) of H3K36me2 in Mb1creNsd2loxSET/loxSET vs. Nsd2loxSET/loxSET

splenic B cells in genic, intergenic, and promoter regions. The data represent 2 biological replicates and 3 independent measurements.

3330 FEBS Letters 594 (2020) 3324–3337 ª 2020 Federation of European Biochemical Societies

NSD2/MMSET controls B1 cell development in mice M. Dobenecker et al.



The lack of NSD2 SET domain controls isotype

class switching, splenic germinal center

formation, and the humoral immune response

Previous studies reported that NSD2 is required for B-

cell class switch recombination [44,45]. In agreement

with these studies, we found reduced serum levels of

IgM, IgG3, and IgA in Mb1creNsd2loxSET/loxSET mice

compared to their Nsd2loxSET/loxSET littermate controls

(Fig. 3A) and a reduced percentage of IgA-positive B

cells in the Peyer’s patches (Fig. 3B). To determine

whether NSD2DSET B cells have impaired switching

to IgA in vitro, we stimulated B2 cells in the presence

of TGF-b or all trans-retinoic acid (ATRA) and mea-

sured class switch recombination by flow cytometry

(Fig. 3C). IgA switching was consistently decreased in

NSD2DSET B cells, while their ability to upregulate the

integrin a4b7—a known target of RA signaling [46]—
was maintained. Switching to IgG3 in response to LPS

was also significantly impaired, while switching to IgG1

in response to LPS + IL4 showed no defect (Fig. 3D).

In response to infection or vaccination, B cells form

germinal centers (GC) in lymphoid organs [47]. To
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plots show relative abundance of T cells (T cells, CD3e+) and B cells (B cells, B220+); and the relative abundance of surface IgA-positive

(B220+IgA+) B cells in Peyer’s patches of Nsd2loxSET/loxSET (WT) and Mb1creNsd2loxSET/loxSET (NSD2DSET; ko) mice. The percent of IgA+ B2
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evaluate the role of the NSD2 SET domain in GC for-

mation, we immunized mice with sheep red blood

(SRB) cells and analyzed splenic GCs by flow

cytometry. NSD2DSET GCs were smaller both under

steady-state conditions and upon immunization, while

the distribution of GC light versus dark zone was

CD95

C
D

38

CD86

C
X

C
R

4

0 102 103 104 105

0

102

103

104

105

2.8
GC

0 102 103 104 105

0

102

103

104

105 DZ 58

LZ
29

0 102 103 104 105

0

102

103

104

105

1.4

0 102 103 104 105

0

102

103

104

105 53

27

WT

day 7 SRB
A

NSD2ΔSET

0

1

2

3

4

%
 G

C
 B

 c
el

ls

*

**

WT WT

not immunized SRB d7

NSD2ΔSET NSD2ΔSET

1004

1005

1006

1007

# 
G

C
 B

 c
el

ls **

**

WT WT

not immunized SRB d7

NSD2ΔSET NSD2ΔSET

100

1000

10000

100000

1000000

WT KO WT KO WT KO
day 0 day 7 day 14

*

10

100

1000

10000

100000

WT KO WT KO WT KO
day 0 day 7 day 14

WT KO WT KO WT KO
day 0 day 7 day 14

10

100

1000

10000

100000

1000000

λ c
ha

in
 (U

/m
l)

 Ig
G

3 
(U

/m
l)

 Ig
M

 (U
/m

l)

B

0 7 14 21 28 35 42 49 56 63 70
100

1000

10000

100000

1000000

an
ti-

N
P 

Ig
G

1 
(U

/m
l)

NSD2ΔSET
WT

1

10

100

1000

10000

an
ti-

N
P 

Ig
G

3 
(U

/m
l)

0 7 14 21 28 35 42 49 56 63 70

* ***

*

*** **
*** **

***

days

days

NP-CGG

C
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injected IP with sheep red blood cells, and the percent of germinal center (GC) cells (GC; CD95+CD38dull) and the percent of GC B cells in

the light zone (LZ; CD86+CXCR4dull) and dark zone (DZ; CD86�CXCR4+) of the spleen are indicated in the representative FACS plots. More

than 3 independent experiments with 3 or more mice per group were performed. The percent and total number of GC B cells in

Nsd2loxSET/loxSET (WT, open symbols) and Mb1creNsd2loxSET/loxSET (NSD2DSET, red symbols) mice were plotted below. Each symbol

represents one mouse (4 wild-type and 6 NSD2DSET mice). Significance was determined by unpaired t-test *: P ≤ 0.05, **: P ≤ 0.01. (B) T-
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similar (Fig. 4A). To evaluate the antigen-specific

humoral response, mice were immunized with model

antigens. The T-independent antigen NP-Ficoll

induced the typical antigen-specific IgM, IgG3, and k-
chain response [48], with a slight reduction in the

number of IgM-specific antibodies at day 14 postim-

munization in mice with NSD2DSET B cells (Fig. 4B).

In response to immunization with the T-cell-dependent

antigen NP22-CGG, we found a mild antigen-specific

IgG1 defect and more pronounced IgG3 defect in the
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recall response to secondary immunization (Fig. 4C).

We conclude that NSD2DSET in B cells mildly alters

isotype class switching, splenic germinal center forma-

tion, and the humoral immune response.

NSD2 is required for the generation of B1 cells

Contrary to the mild effects on B2 cells, peritoneal B1

cells were strongly reduced in Mb1creNsd2loxSET/loxSET

mice. FACS analysis of peritoneal cells derived from

these animals revealed an over 12-fold reduction in the

number of IgMhiCD5hiCD11bhi B1a cells and a nearly

threefold reduction of the IgMhiCD5loCD11bhi B1b

cells (Fig. 5A,B). Phosphatidylcholine-specific antibod-

ies in B1 cells are enriched for Vh11 or Vh12 heavy

chains paired with Vj4 or Vj9 light chains [49].

Peritoneal B cells expressing Vh11/Vj9 antibodies were

nearly absent in Mb1creNsd2loxSET/loxSET mice (Fig. 5C).

In agreement with this finding, Vh12 – Jh rearrange-

ments revealed a defect in Vh12-Jh1/Jh3 junctions in

NSD2DSET B1 cells (Fig. 5D). We conclude that intact

NSD2 is required for the generation of B1 cells.

To address the question whether NSD2 is essential

for the generation or the maintenance of B1 cells, we

analyzed 3-week-old mice. While littermate control mice

(Nsd2loxSET/loxSET) had a large percentage of B1a and

B1b cells, young Nsd2DSET/DSET mice displayed a signifi-

cant reduction in the percent and number of these pop-

ulations, indicating that the development, and not the

maintenance of B1 cells, is impaired (Fig. S4).

Discussion

In this work, we demonstrate that NSD2 (MMSET), a

SET domain-containing histone lysine methyltrans-

ferase, dimethylates lysine 36 of histone H3

(H3K36me2) in vivo, affecting majority of all modified

histones. The selectivity of H3K36me2 downregulation

only at some gene targets suggests a locus-specific

mechanism of NSD2 targeting to the chromatin in B2

cells. How such specificity is achieved remains to be

investigated further. A likely scenario is that NSD2 is

recruited to chromatin with the help of its noncatalytic

domains, which differ between distinct NSD family

members [20].

While being dispensable for B2 cell development

sensu stricto, this enzyme appears to contribute to the

control of isotype class switching, splenic germinal cen-

ter formation, and the humoral immune response. We

propose that NSD2 might play a role in the regulation

of peripheral B2 cell maintenance. One of the impor-

tant conclusions of this study is related to the obvious

lack of NSD2 contribution to the B-cell division. This

particular finding argues against the current view on

NSD2 as an important regulator of cell proliferation

[50–53]. The unaltered pro-B- to pre-B-cell transition

in Nsd2DSET/DSET mice implies that NSD2 does not

play a critical role in IgH gene rearrangement and

expression, as well as division of B-cell progenitors.

The wild-type-like pattern of immature B2 cell genera-

tion in the bone marrow of Nsd2DSET/DSET mice also

suggests that NSD2 is not crucial for surface expres-

sion of IgM and signaling, required for the generation

of immature B cells.

In contrast to the fairly minor effects on B2

cells, peritoneal B1 cells are strongly affected when

the NSD2-encoding gene, Nsd2, was ablated in B-

cell-specific manner. NSD2 mRNA is expressed at

lower levels in adult B1 cells as compared to B2

cells. This observation, combined with the selective

reduction of the B1 cells following NSD2 gene

ablation, suggests that NSD2 is likely to contribute

to fetal B lymphopoiesis rather than to B1 cell

maintenance during adulthood. The major reduc-

tion of B1 cell numbers is mirrored by a decrease

in serum antibody titers. It is well established that

B1 cells are the largest contributors to the overall

serum levels of IgM and IgG3 [54,55], which, in

addition to the switching defect in B2 cells, can

explain the reduction in serum levels of these

immunoglobulins.

Understanding the exact mechanisms of NSD2 con-

tribution to B1 cell differentiation will require the

development of approaches that allow for efficient

inactivation of NSD2 in B1 cells during embryonic

development, as well as after the establishment of the

mature B1 cell compartment. However, already at

this point, our highly unexpected findings revealed

NSD2 as the first-in-class epigenetic master regulator

of a major B-cell compartment in mice. This observa-

tion, while currently limited to studies in experimental

animals, may help to understand the contribution of

NSD2 malfunction to lymphoid tumor development

in human.
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